B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2015
ST 3506 - MATRIX AND LINEAR ALGEBRA

Date: 06/11/2015
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

PART - A

Answer ALL the questions.

1. Define idempotent matrix with example.
2. Mention any two properties of determinants.
3. Compute the rank of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right]$.
4. Define singular and non singular matrices.
5. Define linearly dependent and independent vectors.
6. If $\mathrm{A}=\left[\begin{array}{ll}4 & 7 \\ 2 & 6\end{array}\right]$ find A^{-1}.
7. Define a symmetric matrix.
8. Define a linear transformation.
9. Determine the characteristic roots of $\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$.
10. Show that if λ is the eigen value of A then λ^{-1} is an eigen value of A^{-1}.

PART - B

Answer any FIVE questions.
11. Prove that the eigen values of a hermitian matrix are all real and those of a skew hermitian matrix are purely imaginary and zero.
12. For any square matrix A with real number entries $A+A^{\prime}$ is a symmetric matrix and $A-A^{\prime}$ is a skew symmetric matrix.
13. Show that $(\operatorname{Adj} A) A=A .(\operatorname{Adj} A)=|A| \mathrm{I}_{\mathrm{n}}$.
14. Using Cayley - Hamilton theorem, find the inverse of $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$.
15. Prove that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.
16. Show that eigen vectors associated with distinct eigen values of a matrix and linearly independent.
17. Show that a) $(A B)^{\prime}=B^{\prime} A^{\prime}$ and b) $\operatorname{Tr}(\mathrm{AB})=\operatorname{Tr}(\mathrm{BA})$.
18. Explain Cramer's rule with an example.

Answer any TWO questions.
19. a) What are the properties of determinants?
b) Show that the determinant of a matrix is left unchanged if a constant multiple of the elements of any row/column is added to the corresponding element of another row/column.
20. Find the inverse of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 0 & 2 \\ 4 & 1 & 0 & 3\end{array}\right]$.

$$
\left|\begin{array}{lllll}
1 \\
\frac{2}{7} & 2 & 4 & 3 & 0
\end{array}\right| .
$$

21. a) Evaluate the determinant of $\left\lvert\, \begin{array}{ccccc}1 & 1 & -1 & 1 & 3 \\ 2 & -1 & -2 & 5 & 1 \\ 4 & 3 & 6 & 2 & 1 \\ 7 & 0 & -1 & 1 & 1\end{array}\right.$.
b) State and prove Cayley - Hamilton theorem.
22. a) Examine the consistency of the following system of equations and solve, if consistent:

$$
\begin{gathered}
x-3 y+w=2 \\
3 y+2 z+w=3 \\
x-y-z-2 w=1 \\
-2 x+5 y+z+3 w=1
\end{gathered}
$$

b) Prove the following identity.

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
b+c & c+a & a+b \\
b^{2}+c^{2} & c^{2}+a^{2} & a^{2}+b^{2}
\end{array}\right|=(a-b)(b-c)(c-a)
$$

\$\$\$\$\$\$

